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Abstract

A model for the three-dimensional direct numerical simulation of evaporating, deforming droplets in incompressible
flow is presented. It is based on the volume-of-fluid method and is therefore capable of capturing very strong deformations.
The evaporation rate is computed based on the vapour mass fraction and the PLIC reconstruction of the surface. Empha-
sis is put on the correct calculation of the velocities of the gaseous and liquid phase at the interface which is very important
for cases with high mass transfer rates and thus high Stefan flow. It is accomplished by the use of an iterative algorithm
that enforces a divergence constraint in cells containing the interface.

Validation comprises a 1D test case for interfacial mass transfer, droplet collisions and oscillations as well as calculation
of Sherwood numbers for two different cases of evaporating droplets where low and high mass transfer rates occur. Com-
parison with data from the literature shows good agreement of the obtained results.

The simulation of a strongly deformed water droplet in a flow at a high Reynolds and Weber number is used to dem-
onstrate the capabilities of the presented method. The emerging flow field in the wake of the droplet is very complex and
three-dimensional.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Heat and mass transfer across the liquid interface of multiphase flows is of extensive importance to many
scientific and technical applications. The growth of raindrops due to condensation is a prominent example of
these phenomena taking place in nature, whereas the evaporation of droplets during the combustion of fuel
sprays in automotive engines or gas turbines has been subject to a large number of investigations in engineer-
ing. Another example is the process of droplets impinging on hot surfaces. It needs to be understood in order
to assess the occurrence of thermal stresses in, for instance, lambda probes and serves as a good example of the
complex interaction between the surrounding flow field, deformation of the free surface and heat/mass trans-
fer across the liquid interface. In general, the small scales and high velocities hinder experimental access to
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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these topics, whereby numerical simulation of the mentioned phenomena has received considerable attention
in the past.

Looking at the evaporation of sprays, the breakup-process can lead to strongly 3D deformed droplets with
high velocities relative to the surrounding gas. The resulting high Reynolds numbers (ReD ¼ Dqu=l) require a
three-dimensional and transient numerical approach due to the complex flow field (the flow around droplets
with a Reynolds number ReD > 270 is fully 3D and unsteady) and lead to high computational costs.

The actual process of evaporation can be treated using the analogy of heat and mass transfer for low mass
transfer rates only; it is therefore applicable to atmospheric phenomena, for example [16]. However, industrial
processes (high-temperature environment) can lead to high mass transfer rates where the mass transfer needs
to be considered separated from heat transfer, taking into account the Stefan flow.

The simulation of a multiphase flow with free interfaces still is one of the big challenges in CFD despite
decades of work on that topic. Difficulties are, among others, the exact localization of the interface, calcu-
lation of surface tension and the high variation of fluid properties which can be three orders of magnitude
(e.g. density ratio of water/air). The numerical method should be capable of maintaining a sharp interface
without smearing it over a couple of cells due to numerical diffusion. Furthermore, the ability to cover strong
topological changes including break-up and coalescence is desired, whereas the conservation of mass should
still be guaranteed. Two different classes of methods have been developed in the past to deal with the men-
tioned tasks: tracking and capturing methods. Tracking methods are the moving mesh, front tracking, bound-
ary integral and particle schemes. They are of Lagrangian type, the interface position is indicated by a
Lagrangian marker which could be a particle or a polygon, etc. Capturing methods on the other hand are
continuum advection, volume tracking, level set and phase field method schemes. Here the interface is cap-
tured from a function relating to the phases more than to the interface. A detailed overview of these schemes
can be found in [17].

Renksizbulut and others [30,27] have used a moving mesh method for the computation of evaporation rates,
focusing on droplets. The method is a mixed method with moving meshes only in the subset of the grid near the
interface whereas the rest of the grid is a fixed Eulerian one. He used the method to determine the influence of
variable properties on evaporation [28]. A disadvantage of the model is its limitation to 2D axisymmetric
problems and small deformations. Haywood et al. used their model described in [11] to simulate the transient
evaporation process of deformed droplets [12]. The model is similar to the one mentioned before and also lim-
ited to two-dimensional cases.

Juric and Tryggvason extended the front tracking method described in [45] for boiling flows [15].
Son and Dhir developed a model for boiling flow based on the level set approach [43,40]. Level set methods

employ an additional transport variable representing the distance to the phase interface. They are capable of
resolving arbitrary changes of the interfaces including break-up and coalescence. One big disadvantage of the
original level set method is that conservation of liquid mass can not be guaranteed. This issue has been
addressed by various authors, amongst others by Enright et al. [3] with their particle level set method or by
Sussman et al. [42,41] with their coupled level set and volume of fluid method (CLSVOF), improving mass
conservation significantly.

A method using the volume-of-fluid (VOF) approach for boiling flow was presented by Welch and Wilson
[46]. VOF enables the scientist to detect any changes of topology and is in addition conservative due to its
formulation. Welch and Wilson used the heat flux across the interface in order to calculate the mass of the
phase changing liquid. They applied their method to a horizontal film-boiling problem in 2D.

Davidson and Rudman presented their VOF-based algorithm for the calculation of transport processes
across deforming interfaces, using the analogy between heat and mass transfer [2]. The algorithm is limited
to axisymmetric cases and does not consider volume changes due to phase change.

Jung and Sato conducted three-dimensional direct numerical simulations of a high Schmidt number flow
over a droplet [14]. They employed a moving, unstructured mesh consisting of prisms at the interface to
resolve the viscous boundary layer and tetrahedral cells in the remaining domain. Additional thin layer-cells
inside the layer of prism-cells attached to the interface were used for calculation of mass transfer.

Another level set based approach to the topic of evaporation was shown by Tanguy et al. [44]. They utilized
the Ghost Fluid Method [4] to enable the use of high order discretization schemes at the interface. By devel-
oping a model to calculate the interface velocities considering the volume change due to evaporation they were
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able to cover the physical effects related to the Stefan flow. The calculations have been done in 2D and have
not yet been validated against experimental data or correlations from the literature.

Gibou et al. [5] presented a similar method based on level set and Ghost Fluid, as well. They preserve the
discontinuity of all variables but the viscosity which is smoothed across the interface. The method was applied
to simulate film boiling in 2D.

Nikolopoulos et al. numerically investigated the behaviour of liquid droplets impinging onto a hot sub-
strate using the VOF-method and adaptive mesh refinement [23]. They were able to predict the levitation
of the drops above the Leidenfrost temperature and to calculate parameters of the splashing process below
the Leidenfrost point.

Taking into account the requirements for the simulation of spray evaporation – namely strong deforma-
tions of the interface including break-up and coalescence and a complex, three-dimensional surrounding flow
field –, the VOF-method seems to be a good choice to deal with those challenges. The work of the present
paper is therefore based on the code FS3D (Free Surface 3D) [33] for isothermal, incompressible two-phase
flows in 3D. Its efficiency and ability to simulate highly dynamic processes was proven in [35] for a splashing
droplet and in [34] for droplet collisions. The code was extended by Hase to account for heat transfer [8]; the
calculation of heat transfer of strongly deformed droplets was done in [9,10]. A simple evaporation model was
implemented by Hase, having the disadvantage of being based on empirical parameters [7]. In the recent past
FS3D was employed to simulate the primary breakup of turbulent jets [38]. Special features of FS3D are its
efficient multigrid solver, its complete parallelization via OpenMP and MPI with domain decomposition and
vectorization, thus facilitating the computation of large problems.

The present paper will focus on the direct numerical simulation of 3D deformed droplets in a flow. To the
best knowledge of the author such calculations have not been reported before in the literature.

2. Mathematical formulation

2.1. Phase representation by the VOF method

We describe below our method for handling surface deformation in the presence of three phases. The
method is broadly based on the volume-of-fluid method [13] but there are some important enhancements with
regard to volume conservation and interface velocity. First, the formulation for two phase flows without phase
change is presented; it will be expanded to a third phase including phase change subsequently.

In order to distinguish between two phases, the additional field variable f1, which shall be
f1ðx; tÞ ¼
0 in the gaseous phase

0 < f1 < 1 in cells containing a part of the interface

1 in the liquid phase

8><
>: ð1Þ
and represents the volume fraction of the liquid phase, is utilized. An explaining illustration is given in Fig. 1.
The function f1 is transported across the computed domain by [33]
of1

ot
þr � ðf1uÞ ¼ 0: ð2Þ
Fig. 1. Fluid representation by the f1 variable.
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A crucial requirement to the successful advection of f1 is a sharp interface and the exact knowledge of its
position, otherwise f1 gets smudged across several cell layers due to numerical diffusion. This task is met by
reconstructing the interface using the PLIC (Piecewise Linear Interface Calculation) algorithm [32]. The recon-
struction is done on a geometrical basis and serves for the determination of the liquid and gaseous fluxes
across the cell faces.

In order to account for a third phase a second VOF-variable is introduced: f2 is the volume fraction of
vapour. It is assumed to be insoluble inside the liquid phase but there is diffusion in the gaseous phase.

We start with the transport equation of one component i in a multicomponent gas mixture as given by [22]:
oqp;i

ot
þr � ðqp;iuÞ ¼ r � ðqD12rX iÞ þ _m000i ; ð3Þ
where qp;i is the partial density, X i ¼ qp;i=q is the mass fraction of component i, D12 is the binary diffusion
coefficient and _m000i is the volumetric source. qp;i can be expressed by the VOF-variable fi
qp;i ¼
mi

V
¼ qiV i

V
¼ qifiV

V
¼ qifi; ð4Þ
leading to
oqifi

ot
þr � ðqifiuÞ ¼ r � qD12r

qifi

q

� �� �
þ _m000i : ð5Þ
Assuming that qi ¼ const:, it can be simplified to
ofi

ot
þr � ðfiuÞ ¼ r � qD12r

fi

q

� �� �
þ _m000i

qi
ð6Þ
and the transport equation of the vapour phase can be stated as
of2

ot
þr � ðf2ugpÞ ¼ r � qgpDvgr

f2

qgp

 ! !
þ _m000

qv

: ð7Þ
Here, Dvg is the binary diffusion coefficient of the vapour inside the gas, qgp is the density of the gaseous
phase and the last term reflects the production of vapour due to evaporation with _m000 being the volumetric
mass source of vapour and qv the vapour density. The generation of volume as a result of the evaporation
process requires the use of different transport velocities; the gaseous phase gets advected by ugp, the liquid
phase by uC (because of the high density ratios considered, the velocities of the interface and of the liquid
phase are assumed to be equal). ugp and uC differ from each other only in cells containing a part of the inter-
face, there is no need to discriminate in the residual domain. The calculation of these velocities and the vol-
umetric vapour source will be described in detail in Section 3.

Neglecting the change of density inside the gaseous phase due to qv � qg, Eq. (7) can further be simplified to
(see [7] for a detailed derivation):
of2

ot
þr � ðf2ugpÞ ¼ r � ðDvgrf2Þ þ

_m000

qv

: ð8Þ
The transport equation of the liquid phase finally reads
of1

ot
þr � ðf1uCÞ ¼

� _m000

ql

; ð9Þ
where ql is the liquid density.
The VOF-variables are used to compute local fluid properties by applying the one-field formulation, result-

ing in
qðx; tÞ ¼ qlf1ðx; tÞ þ qvf2ðx; tÞ þ ð1� f1ðx; tÞ � f2ðx; tÞÞqg ð10Þ
for the local density, for example. Other properties like the dynamic viscosity l or the heat conductivity k are
calculated analogously; however, the specific heat capacity cp is mass averaged instead of volume averaged. In
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the present paper, the fluid properties are assumed to be constant for a given case. This limitation will be over-
come in the future by using temperature dependent properties.

2.2. Momentum equations

In the momentum equations
oðquÞ
ot
þr � ðquÞ � u ¼ �rp þ qkþr � l½ðruþ ðruÞTÞ� þ fc ð11Þ
u is the velocity of the one-field formulation (ugp and uC are the transport velocities of the VOF-variables and
only differ from u in cells containing the interface), p is the pressure and the term qk accounts for body forces,
e.g. gravity. Surface tension, which is of major importance to the treatment of multiphase flows, is included as
the volume force fc. Following the conservative model presented by Lafaurie et al. [19] this force is computed
using the smoothed VOF variable ~f 1 by
fc ¼ r � ðraC½I� n̂Cn̂C�Þ ð12Þ
with r being the surface tension, aC ¼ jr~f 1j the surface density and n̂C ¼ r~f 1=jr~f 1j the unit normal vector on
the surface. Smoothing of the VOF variable is necessary in order to minimize the occurrence of parasitic cur-
rents due to discretization errors. It is only performed for the calculation of fc and has no influence on the
actual f1-distribution. As proposed by [1], ~f 1 is computed using the tensor product of a quadratic B-spline.
The coefficients of the smoothing operator B2 only differ from zero in the 26 surrounding cells and the con-
sidered cell itself. By defining i ¼ ði; j; kÞ and j ¼ ðr; s; tÞ, the smoothing operation can be expressed as
~f 1;i ¼
X
j2SB2

B2ði; jÞf1;iþj ð13Þ
with
SB2 ¼ f½�1; 0; 1� � ½�1; 0; 1� � ½�1; 0; 1�g: ð14Þ

The smoothing operator is given by
B2 ¼ 1

512
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1
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512

1 6 1

6 36 6

1 6 1

2
64

3
75

t¼1

: ð15Þ
The pressure p in Eq. (11) is computed by projecting the emerging velocity field onto one fulfilling the con-
tinuity equation (see below) and solving the resulting Poisson equation.

2.3. Continuity equation

In contrast to two phase flows without phase change (and no solubility of one phase inside the other) where
the divergence-free condition of the velocity field has to be satisfied for incompressible flows, new volume is
generated by evaporation or volume vanishes due to condensation, therefore volume sources or sinks are
found at the interface. An obvious approach is
r � u ¼ � _m000
1

qv

� 1

ql

� �
; ð16Þ
where a volume balance is given on the right hand side. This expression has been used by various authors, e.g.
by Son and Dhir [40] in the level-set framework. Gibou et al. [5] and Tanguy et al. [44], both using a combi-
nation of the level-set method and Ghost Fluid method, defined their velocity jump conditions in a similar
war. For the VOF-method however, u, reflecting the velocity field of the one-field formulation, is mass aver-
aged and therefore generally not volume conservative. Hence Eq. (16) is valid only for few cases which will be
pointed out in the following.
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In order to get a better understanding of this fact, first the definitions of the volume weighted and the mass
weighted velocity are presented. Fig. 2 shows the general case of a partly filled cell. fy;j�1=2 reflects the wetted
portion of face j� 1=2, the non-wetted portion is therefore 1� fy;j�1=2. The volume weighted velocity in the
direction of y is given by
vvol;j�1=2 ¼ vC;j�1=2fy;j�1=2 þ vgp;j�1=2ð1� fy;j�1=2Þ; ð17Þ
whereas the mass weighted velocity also contains the densities of the phases (the subscript gp denotes the gas-
eous phase, that is vapour and inert gas):
vq;j�1=2 ¼
vC;j�1=2fy;j�1=2qf þ vgp;j�1=2ð1� fy;j�1=2Þqgp

fy;j�1=2qf þ ð1� fy;j�1=2Þqgp

: ð18Þ
In case of fully wetted or completely empty cell faces, there is only one important transport velocity – either
the velocity of the liquid phase (in case fy ¼ 1) or the velocity of the gaseous phase ðfy ¼ 0Þ. Then both def-
initions for vq and vvol lead to the same velocity and Eq. (16) is valid.

For the more common case of partly wetted cell faces, vq and vvol differ due to the large density ratio
encountered in most observed flows (e.g. water–air: qf=qgp � 1000). Here, Eq. (16) is not valid anymore
because the divergence of u does not reflect the balance of volume fluxes across the cell faces.

The problem is handled by computing a virtual velocity field u� based on the velocities of the interface and
the gaseous phase, uC and ugp, and employing its divergence to the actual continuity equation
r � u ¼ r � u�: ð19Þ

The calculation of uC, ugp and u� will be described in detail in the following section. Note that volume

changes due to diffusion are not taken into account.

2.4. Energy equation

Neglecting the production of thermal energy by viscous dissipation, the energy equation in temperature for-
mulation is given by [7]
o

ot
ðqcpT Þ þ r � ðqcpuT Þ ¼ r � ðkrT Þ þ T 0

o

ot
ðqcpÞ þ r � ðqcpuÞ

� �
þ qvDhv

_m000

qv

; ð20Þ
Fig. 2. Definition of mass averaged and volume averaged velocities.
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where T denotes the temperature, T 0 is the reference temperature for zero enthalpy and Dhv the latent heat of
the evaporating fluid. For further details concerning the implementation and validation see [8].

3. Numerical details

3.1. Computational grid

The spatial discretization is based on a cartesian grid using a staggered arrangement of the variables (MAC-
grid [6]). All scalar variables ðf1; f2; p; T Þ are stored at the cell centre whereas the velocities are stored at the
centre of the cell faces. Discrete values are assigned with the subscripts i; j; k in order to express the position
of the considered cell in the x-, y- and z-direction, respectively.

3.2. Calculation of _m000

The volumetric mass source of vapour _m000 is calculated in cells containing the interface only. The criterion
for a cell to contain the interface is that f1 has to satisfy the condition
0:0þ e < f1 < 1:0� e ð21Þ

with e being a small number (e ¼ 10�6), hence avoiding the evaporation either in cells containing only very
small amounts of f1 or in cells that are almost completely filled with liquid.

The local area specific mass source of vapour is calculated based on the gradient of vapour mass fraction X v

normal to the surface. Following the derivation in [16] it can be stated as
_m00 ¼
Dvgqgp

1� X v

rX vn̂C; ð22Þ
where qgp is the local density of the gaseous phase which is computed by the density of gas and vapour con-
tained inside the cell:
qgp ¼
qgð1� f1 � f2Þ þ qvf2

1� f1

: ð23Þ
Now the vapour mass fraction can be determined by
X v ¼
f2

1� f1

qv

qgp

ð24Þ
in each cell containing the gaseous phase.
The vapour pressure at the surface is assumed to be the saturation pressure. It depends primarily on the

surface temperature (the temperature of the cell containing the interface) and is estimated by the Wagner equa-
tion which is given in Appendix A. This pressure is subsequently used to calculate the vapour mass fraction at
the surface, assuming the whole cell containing the interface to be at saturation condition. As derived by Mills
[22], the mole fraction of saturated vapour can be stated as
xv;sat ¼
pv;sat

pstat

ð25Þ
with pv;sat and pstat being the saturation and static pressure, respectively. The mass fraction of saturated vapour
at the interface is finally calculated by applying the following relation, containing the molecular weights of the
vapour Mv and the inert gas Mg:
X v;sat ¼ xv;sat

Mv

Mgp;sat

¼ xv;sat

Mv

xv;satMv þ ð1� xv;satÞMg

: ð26Þ
Knowing the mass fraction of vapour at the surface as well as in the residual domain containing the gaseous
phase, one can now calculate its gradient. The procedure will be illustrated on basis of the x-component
exemplarily. In order to account for the fact that the saturation condition is actually encountered at the
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surface only, the discretization of the gradient is extended by a corrective offset CVOF. A sketch explaining this
offset is shown in Fig. 3. CVOF is obtained on basis of the PLIC reconstruction and thus reflects the geometry
of the surface. Considering
oX v

ox

� �
i

¼ X v;iþ1 � X v;sat;i

Dxc;i þ CVOF

; ð27Þ
where Dxc;i denotes the distance between the two centres of the neighbouring cells i and iþ 1, it becomes
apparent that this offset augments the denominator in case of a rather empty cell where the distance between
the cell iþ 1 and the surface is bigger whereas it reduces the denominator in case of a rather full cell.

Now all requirements are met to calculate Eq. (22). The volumetric mass source of vapour is obtained by
multiplying _m00 with the local interface density aC:
_m000 ¼ aC _m00: ð28Þ

It is important to point out the necessity to calculate the local interface density based on the PLIC recon-

struction instead of employing the relationship aC ¼ jrf1j which represents the complete interfacial area only
globally.

In the case of cells containing almost no liquid (f1 � 0), the mass source is limited to
_m000 ¼ f1ql

Dt
ð29Þ
in order to avoid undershoots of the f1-variable.

3.3. Velocities of the liquid and the gaseous phase

The correct computation of the velocities found at the interface is essential to an exact and stable treatment
of the emerging flow field. The occurence of different velocities of the gaseous and the liquid phase due to the
volume change inherent to evaporation is depicted in Fig. 4. It shows the simple case of the surface normal
being parallel to the x-axis with one fully wetted cell face (i� 1=2) and one cell face with only the gaseous
phase flow (iþ 1=2). Here, the fluid is advected across the left cell face by the surface velocity uC;i�1=2 which
is simultaneously the mass averaged velocity uq;i�1=2 and the volume averaged velocity uvol;i�1=2. On the right
face, the velocity of the gaseous phase ugp;iþ1=2 as well as uq;iþ1=2 and uvol;iþ1=2 coincide. The relationship between
those velocities results from balancing the fluxes and the production of volume at the surface in
ugp;iþ1=2 � uC;i�1=2 ¼ _m000
1

qv

� 1

ql

� �
Dxi; ð30Þ



Fig. 4. Velocities of the gaseous and liquid phase, part 1.

J. Schlottke, B. Weigand / Journal of Computational Physics 227 (2008) 5215–5237 5223
where Dxi indicates the edge length of cell i. Here the volume source is assumed to affect the velocity compo-
nent perpendicular to the surface only.

In Fig. 5 a more general but also more complicated case with an arbitrarily oriented surface and partially
wetted cell faces is illustrated. The determination of the velocities is now much more complicated. On the one
hand a combination of the velocities has to be found that satisfies the volume balance inside the cell, on the
other hand the influence of the volume sources inside the neighbouring cells has to be considered as well.

These difficulties are handled by the use of an iterative algorithm which is presented below. It calculates
preliminary velocities of the liquid and the gaseous phase at the interface and detects the error relating to
the divergence constraint. This error is distributed subsequently in order to obtain the desired velocity field.
The algorithm consists of the following steps:

(1) Calculation of preliminary velocities u0C and u0gp. As already stated above, the volume source _m000 1
qv
� 1

ql

� �
is

assumed to affect the different velocities according to the components of the unit normal vector inside the
cell. This means, for example, that the v- and w-velocities are not changed if the surface normal vector
points in the direction of u. Furthermore, in case that two neighbouring cells contain the interface (and thus
evaporation occurs), the volume sources and normal vectors which are defined at the cell centres are
Fig. 5. Velocities of the gaseous and liquid phase, part 2.
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interpolated to the cell faces. Velocities on cell faces that are completely wetted (mainly adjacent to cells
filled by liquid with f1 ¼ 1) are not changed.Starting with a volume flux balance across the non-wetted por-
tion of face ðiþ 1=2Þ (see Fig. 5), one obtains

A 1� fxð ÞuC þ V _m000
1

qv

� 1

ql

� �
nx

jnj

� �
¼ Að1� fxÞugp; ð31Þ

where A denotes the area of face ðiþ 1=2Þ and V the volume of cell i. After combination with Eq. (18) and
simplification, the equations for u0C and u0gp read

u0C ¼ uq � _m000Dxc

nx

jnj

� �
1

qv

� 1

ql

� �
qgp

q

� �
; ð32Þ

u0gp ¼ uq þ _m000Dxc

nx

jnj

� �
1

qv

� 1

ql

� �
ql

q

� �
fA

1� fA

� �
; ð33Þ

where fA is the wetted portion of the cell faces and uq is the mass weighted velocity obtained by the pressure
correction of the last time step. They describe the dependency on the mass weighted velocity and the volume
source.
(2) Calculation of a preliminary volume weighted velocity u0vol and its divergence error. u0C and u0gp are now
used to compute the preliminary volume weighted velocity:

u0vol ¼ u0CfA þ u0gpð1� fAÞ: ð34Þ

Its divergence r � u0vol is compared to the desired divergence produced by evaporation and an error is com-
puted for each cell containing the interface:� �
Eðr�uvolÞ ¼ _m000
1

q
� 1

q
�r � u0vol: ð35Þ
v l
(3) Distribution of Eðr�uvolÞ and calculation of final values for uC and ugp. This error is distributed to the spatial
directions according to the local unit normal vector of the surface. This is beneficial to the computational per-
formance because each velocity component can now be treated independently, thus facilitating vectorization.
One problem is that once the velocities at the faces of one cell (e.g. ui�1=2 and uiþ1=2 for cell i) are adjusted to
account for Eðr�uvolÞ, these velocities are fixed and must not be changed by the neighbouring cells. It is overcome
by the use of a ‘‘credit point”-system which rates all cells containing the interface by figuring out if there are
unchangeable neighbours (fully wetted faces, see above) and on basis of the f1-variable (the fuller, the higher
the priority of the considered cell) and identifies the best sequence in which the velocities are computed.
Looking at the examples given in Fig. 6, the algorithm starts calculating the velocities on the faces of cell i

in both cases and then moves to the adjacent cells.The final volume weighted velocities uvol for cell i are
obtained by

uvol;i�1=2 ¼ u0vol;i�1=2 þ Eðr�uvolÞ;i
nx

jnj

� �
i

Dxi

1
qi�1=2

1
qiþ1=2
þ 1

qi�1=2

 !
; ð36Þ

uvol;iþ1=2 ¼ u0vol;iþ1=2 þ Eðr�uvolÞ;i
nx

jnj

� �
i

Dxi

1
qiþ1=2

1
qiþ1=2
þ 1

qi�1=2

 !
ð37Þ

if the velocities on both faces are changed. The last term provides a reasonable spreading of Eðr�uvolÞ so that
velocities on barely wetted cell faces contribute more to the divergence of uvol and vanishes if uvol has to be
changed on one face only. Now uC and ugp are computed by

uC ¼ uvol þ _m000
1

qv

� 1

ql

� �
Dxc

nx

jnj

� �
fA

1� fA

� �
; ð38Þ

ugp ¼ uvol � _m000
1

qv

� 1

ql

� �
Dxc

nx

jnj

� �
; ð39Þ

which results from combining Eq. (31) and (17).



Fig. 6. Sequence of calculating the velocities.
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(4) Calculation of u�q and the source of the continuity equation. Finally, a mass weighted velocity field u�q is
calculated with its definition given in Eq. (18)

u�q ¼ uCfAql þ ugpð1� fAÞqgp: ð40Þ
Its divergence is employed as the source term for the continuity equation as given in Eq. (19).
3.4. Time integration

The accuracy of the time integration is of first order. The convective and diffusive transport terms are per-
formed explicitly and the particular stability constraints are obeyed. For the advective transport, u, uC and ugp

are employed and the Courant–Friedrichs–Levy (CFL) stability condition is followed. When calculating the
CFL number in cells containing the interface, one has to bear in mind that uC and ugp are only model velocities
and not actual transport velocities. The transport velocities used for calculating the CFL number can be
derived from the fluxes of the liquid and gaseous phase.

For the diffusive transport, stability constraints are
2lDt
qDx2

6 1;
2kDt

qcpDx2
6 1 and

2DvgDt
Dx2

6 1 ð41Þ
for the viscous transport, heat conduction and vapour diffusion, respectively. The explicit treatment of the dif-
fusive terms limits the presented method to convective dominated problems. In the case of diffusive dominated
problems (e.g. high-viscosity fluids), an implicit treatment of these terms would avoid stability problems but
also implicate a higher computational effort.

The capillary time step constraint is
2
ffiffiffiffiffiffiffiffiffi

rp
qlþqg

q
Dt

Dx3=2
6 1: ð42Þ
The Poisson equation that arises from projecting the preliminary velocity field onto one fulfilling the diver-
gence condition given in Eq. (19) is solved implicitly by a fast multigrid algorithm. The emerging velocity field
at the next time level unþ1 serves for the calculation of unþ1

C and unþ1
gp as described in Section 3.3.

4. Results

A large number of very detailed validation cases have been run over the past decade for the in house code
FS3D, ranging from colliding droplets over droplet wall interactions, splashing droplets, transient heat trans-
fer in droplets and evaporation. The reader is referred to [34,21,35,10,7] for more details on this work.
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For the present study, the capability of the presented method to properly account for the interfacial jump
conditions and mass transfer was proven for a 1D test case where an analytical solution is available.

Further more, the correct implementation of surface tension and the ability to compute large deformations
is shown by a brief comparison with the results of Pan and Suga [24] for colliding droplets with and without
evaporation. In addition, the frequency of surface tension driven droplet oscillations is compared to an ana-
lytical solution.

Validation is then performed for evaporating droplets because of the relevance to spray modelling and the
extensive investigations that have been done in the past in this field of work. Here, some qualitative results are
shown which demonstrate the ability of the presented method to simulate the considered problems. Subse-
quent to this a quantitative comparison between numerical results and correlations from literature for both
low and high mass transfer conditions is presented.

In order to demonstrate the power of the present code FS3D, the behaviour of a deformed droplet in an air
stream at high Reynolds and Weber number is investigated.

4.1. Numerical setup

All calculations have been done on a three-dimensional cartesian grid.
The setup used for the 1D test case is described in the following section. The simulation of droplet collisions

for comparison with Pan and Suga and the investigations on oscillation frequencies have been performed
inside a rectangular domain with continuous boundary conditions.

The computational domain for evaporating droplets is shown schematically in Fig. 7 with a 2D cut through
the centre of the droplet. In order to minimize the numerical effort a coordinate system moving at droplet
speed with a damping zone at the outlet is used. This makes it possible to keep the droplet in the centre of
the domain. The damping zone avoids back-flow into the computational domain at the outflow and was
described in detail in [36]. On the left boundary an inflow condition with a uniform velocity distribution is
used, the lateral boundary conditions are free slip conditions. The vapour variable f2 was set to zero in the
whole domain (dry air) at the beginning of the simulations.

The cell size of the employed grids has been selected in a way to capture the small scale features in the flow.
For evaporation this means that the thermal and concentration boundary layer around the droplet had to be
resolved.

4.2. Validation

4.2.1. 1D test case for interfacial mass transfer

The correct treatment of the jump conditions at the interface was judged considering the case of a laminar
Couette flow with high mass transfer. The numerical setup, consisting of a non-moving liquid film at the bot-
tom and the prescribed velocity u1 at the top with a distance of d between interface and top boundary is
depicted in Fig. 8. The liquid temperature T s is kept constant during the simulation and determines the result-
ing mass transfer number BM ¼ ðX v;s � X v;1Þ=ð1� X v;sÞ. The vapour mass fraction X v;1 is kept constant, too.
Inflow boundary Outflow boundary

Droplet

Free slip condition Damping zone

Fig. 7. Numerical setup.



Fig. 8. Numerical setup of the 1D test case (couette flow).
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The mass transfer conductance g is introduced according to [16] as
_m00 ¼ g
X v;s � X v;1

1� X v;s

¼ gBM: ð43Þ
Decreasing BM results in vanishing mass transfer _m00 ! 0 and the parameter g� is defined for this limiting
case:
g� ¼ lim
BM!0

_m00

BM

: ð44Þ
For the considered laminar Couette flow, the ratio g=g� can be analytically proven to be only dependent on
the mass transfer driving force BM (see e.g. [16,22]), leading to
g
g�
¼ lnð1þ BMÞ

BM

: ð45Þ
Simulation results for water at different mass transfer numbers BM (T s ranging from 273 K to 362 K) are
shown in Fig. 9, matching the analytical solution perfectly. This match demonstrates the ability of the pre-
sented method to calculate the interfacial mass transfer in terms of mass diffusion and the velocity vs normal
to the surface caused by the Stefan flow in a correct way.
0 0.5 1 1.5 2 2.5
0

0.5

1

Fig. 9. Numerical results and analytical solution for the 1D test case.
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4.2.2. Surface tension

Investigations on colliding water droplets have been conducted. The collision Weber number was
Wecollision ¼ ðqlD0ð2U 0Þ2Þ=r ¼ 20 and the impact parameter v ¼ b=D0 ¼ 0:05. 2U 0 is the relative velocity of
the droplets, D0 their initial diameter and b is the distance between the centres of the droplets projected onto
the direction perpendicular to the relative velocity at the moment of impact. All material properties used are
the ones given in [24]. In case of additional evaporation of the colliding droplets, the water temperature was
chosen to be T l ¼ 293 K. The outcome of the simulations with and without evaporation is presented in Fig. 10
together with the results of Pan and Suga. One can observe a good agreement of the results. Looking at the
conducted calculations with and without evaporation, it can be noticed that the shape of the droplets is not
substantially different for both cases.

For additional validation surface tension driven droplet oscillations were simulated. The simulations were
performed starting with a non-moving ellipsoidal droplet with the polar radius being 50% bigger than the
equatorial radii. The resulting periodic times were compared to those obtained by an analytical approach
of Lamb [20] that is valid for small deformations and neglects the density of the surrounding gas. His formula
for the angular frequency reads
Fig. 10
(water
x2 ¼ lðl� 1Þðlþ 2Þ r

qlR
3
: ð46Þ
The parameter l defines the mode of the oscillation and was selected l ¼ 2 for ellipsoidal deformations. The
periodic times T resulting from both simulations and Eq. (46) are given in Table 2 for four different droplet
sizes. One can observe a perfect match between analytical and numerical results with a deviation less than 1%.

4.2.3. Qualitative results for evaporating droplets

In order to assess the method of modelling the source term in the continuity equation, the time dependent
evolution of the averaged pressure inside the liquid compared to that inside the gaseous phase was investi-
gated. With an incorrect formulation of this source, the pressure correction leads to non-physical oscillations
inside the pressure field.
. Binary droplet collision for We ¼ 20, v ¼ 0:05; (a) results by [24], (b) own calculations without evaporation, (c) with evaporation
), T ¼ 293 K.
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Fig. 11. Time dependent evolution of averaged pressure.
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For testing purposes, calculations employing the formulation given in Eq. (16) were performed and the
pressure evolution was compared to that calculated by the present method. The results shown in Fig. 11
clearly demonstrate the big difference between the smooth curve of the new model and the oscillating pressure
development when using Eq. (16).

Besides their general undesirability, these oscillations can pose a threat to the whole algorithm due to the
dependence of the vapour source on the pressure. The formulation of _m000 uses the static pressure in order to
determine the local vapour mass fraction at the surface. An incorrect prediction of the static pressure caused
by an incorrect (too large) source in the continuity equation can therefore lead to an overprediction of the
vapour source because a higher vapour mass fraction at the surface is calculated by Eqs. (25) and (26) which
in turn generates an even higher source in the continuity equation, making the problem worse.

The improvement in terms of a smooth temporal development can also be observed by comparing the com-
puted Sherwood number with results obtained in [7]. Sh is defined by
Sh ¼ Db
Dvg

; ð47Þ
where D denotes the diameter of a volume equivalent droplet and b is the mass transfer coefficient. The devel-
opment of Sh, taken from simulations of the Ranz and Marshall experiments [25, see below] for a Reynolds
number of ReD ¼ 96, is shown in Fig. 12 for both models. Again, the smooth Sh-curve predicted by the present
model is in contrast to the prediction of the former model by Hase, which is superposed by high frequency
oscillations.

4.2.4. Droplet evaporation with low mass transfer rates

The method was quantitatively validated for the case of low mass transfer rates by simulating the well doc-
umented experiments conducted by Ranz and Marshall [25]. Their correlation
Sh ¼ 2þ 0:6Re1=2
D Sc1=3 ð48Þ
with Sc ¼ l=Dvg being the Schmidt number, has often been used in the past. A more recent experimental inves-
tigation on evaporating droplets was done by Schwarz and Smolik [39]; their results for Sh are on a lower level
compared to those of Ranz and Marshall. Kulmala and Vesala developed the correlation
Sh ¼ 2:009þ 0:514Re1=2
D Sc1=3 ð49Þ
on basis of the experimental data by Schwarz and Smolik [18].
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Fig. 12. Temporal evolution of Sherwood Number; comparison with model by Hase [7].
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The comparison of the given correlations, the experimental results and the numerical results produced by
the present method for a Schmidt number of Sc ¼ l=ðqDvgÞ ¼ 0:63 and a Prandtl number of
Pr ¼ lcp=k ¼ 0:72 is shown in Fig. 13. The simulations were performed on three different grids (coarse:
64� 32� 32 cells, medium: 128� 64� 64 cells, fine: 256� 128� 128 cells) using two symmetry planes. Mate-
rial properties were chosen according to the experiments of Ranz and Marshall, causing a density ratio of
ql=qg � 830 and a viscosity ratio of ll=lg � 75. A summary of the numerical results is presented in Table
1. The numerical results shown in Fig. 13 are those computed on the fine grid.

With increasing Reynolds number, there is a growing deviation between the correlation by Ranz and Mar-
shall (Eq. (48)) and the numerically obtained results. However, this deviation is smaller if one considers the
actual evaporation rates as they are given in Table 1 instead of the Sherwood number. This is likely due to
a different selection of the material properties that occur in the determination of the dimensionless quantities.

Furthermore, the numerical results are in good agreement with the data measured by Schwarz and Smolik
and the correlation of Kulmala and Vesala with a maximum deviation of about 6% for the highest considered
Reynolds number ReD ¼ 132:4.
2 4 6 8 10 12
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Correlation Kulmala/Vesala
Correlation Ranz/Marshall
present method

exp. data Schwarz/Smolik

Fig. 13. Comparison of calculated Sh-results, experimental results and correlations from the literature for low mass transfer rates.
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Looking at the computed Sherwood numbers on the three different grids (Table 1), the need of a high res-
olution in order to sufficiently resolve the boundary layer becomes apparent. This need is of growing impor-
tance for higher Reynolds numbers where the boundary layer gets thinner. The deviation between the
Sherwood numbers calculated on the medium and the fine grid is therefore augmenting if ReD increases. This
implies that even the fine grid, consisting of approximately 4 million cells and giving a spatial resolution of
20 lm, still does not provide a completely sufficient resolution for the given problem. This fact is also empha-
sized by the computed grid convergence index GCI [37] which is used in order to express the reliability of the
given results.

In Table 1, values of Sh that have been extrapolated using the method proposed by Richardson [31] are
presented, too. Those values show a maximum deviation compared to the correlation by Kulmala and Vesala
of less then 4%.

4.2.5. Droplet evaporation with high mass transfer rates

For the case of high mass transfer rates, numerical calculations were done and the obtained Sherwood num-
bers were compared to the correlation given by Renksizbulut et al. [29]:
Table
Result

Sh (�)
Sh (�)
Sh (�)
�R&M (
�Kulmal

� (%)
GCI (%
Sh (�)
�R&M (
�Kulmal

_m (kg/
� _m;R&M
Shfilmð1þ BMÞ0;7 ¼ 2þ 0:87Re1=2
m Sc1=3

film: ð50Þ

The subscript film indicates that the material properties have been taken at film conditions and Rem is the

‘‘mixed” Reynolds number consisting of properties chosen both at film condition and in the free flow:
Rem ¼ Dq1u1=lfilm. The parameter BM ¼ ðX v;surface � X v;1Þ=ð1� X v;surfaceÞ denotes the mass transfer number.
Due to the limitation to constant properties, all material properties (except those for the liquid) used in the
present simulation were chosen at film conditions. Calculations on different grids were performed in an anal-
ogous way to that already described for the case of low mass transfer rates. The results for a water droplet at
T l ¼ 90 	C in a hot, dry air stream ðT1 ¼ 800 	CÞ are presented in Fig. 14. The density ratio for this case is
ql=qg � 1980, the viscosity ratio is ll=lg � 9, the surface tension is r ¼ 61� 10�3 N=m and the binary diffu-
sion coefficient is Dvg ¼ 1:26� 10�4 m2=s. The results are in very good agreement with the given correlation.
This confirms the ability of the presented method to capture the thickening of the concentration boundary
layer due to the Stefan flow and to reflect the emerging self-inhibition of evaporation that takes place in
the case of high mass transfer rates.

4.3. Deformed droplet at high Reynolds and Weber number

In order to demonstrate the power of the present code FS3D, the behaviour of a deformed droplet in an air
stream was investigated. The three-dimensional numerical setup presented in Section 4.1 was used therefore as
well, that is freeslip condition for the lateral walls without symmetry planes, a uniform inflow condition of dry
air ðf2 ¼ 0Þ at the left side of the domain and a damping zone at the outlet. The droplet fluid is water at a
1
s of the simulation of experiments by Ranz and Marshall

Grid Re ¼ 35:9 Re ¼ 59:9 Re ¼ 96:2 Re ¼ 132:4

Coarse 4.38 4.92 5.45 5.77
Medium 4.42 5.14 5.85 6.37
Fine 4.44 5.21 6.03 6.67

%) Fine 12.75 13.02 14.55 15.91

a (%) Fine 4.62 4.00 4.90 5.94

Medium/fine 0.45 1.34 2.99 4.50
) Fine 2.88 0.78 3.05 5.60

Richardson 4.54 5.24 6.18 6.97
%) Richardson 10.79 12.52 12.42 12.13

a (%) Richardson 2.48 3.45 2.54 1.71

s � 10�6) Fine 2.68 3.02 3.66 3.98
(%) Fine 3.25 5.63 5.67 10.56



Table 2
Periodic time of droplet oscillations; comparison between numerical and analytical results

Mass (g) T (Eq. (46)) (s) T (numerics) (s) Deviation (%)

1 4:9469� 10�5 0:896� 10�3 0:895� 10�3 �0:11
2 9:8210� 10�5 1:262� 10�3 1:259� 10�3 �0:24
3 1:9545� 10�4 1:781� 10�3 1:783� 10�3 0:11
4 3:9575� 10�4 2:534� 10�3 2:544� 10�3 0:39
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Fig. 14. Comparison of calculated Sh-results and the correlation by Renksizbulut et al. for high mass transfer rates.
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temperature of T l ¼ 70 	C inside a dry air flow with T1 ¼ 90 	C, leading to a density ratio of ql=qg � 980 and
a viscosity ratio of ll=lg � 19. With the uniform velocity u1 ¼ 15 m=s as the inflow boundary condition and
a diameter of the initially spherical droplet of D ¼ 0:21 cm, the droplet Reynolds number results to
ReD ¼ 1495 and the Weber number to We ¼ qgu2

1D=r ¼ 7:3 ðr ¼ 64:9� 10�3 N= mÞ. The calculation was
performed on a grid consisting of 128� 128� 128 cells on one NEC SX-8 vector processor lasting about
15 hours for a considered realtime of 40 ms.
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Fig. 15. Temporal development of surface ratio A=A0 and Sherwood number.



Fig. 16. Droplet at t = 0, 5, 8 and 12 ms.
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The temporal development of the deformation, expressed as the ratio of the actual surface to the surface of
the initial sphere A=A0, and the Sherwood number are shown in Fig. 15. Due to the initial condition of dry air,
the initial gradient of the vapour mass fraction at the surface is infinite and consequently the initial Sherwood
number is infinite, too. The sudden start of the air flow – comparable to experiments conducted in shock tubes
– leads to a big deformation of the droplet at the beginning of the simulation producing a quite oblate shape.
The droplet then starts oscillating whereas the maximum deformation decays with increasing number of oscil-
lations. The shape of the droplet at different time steps can be seen in Fig. 16 for t ¼ 0 ms, t ¼ 5 ms, t ¼ 8 ms
and t ¼ 12 ms. As was already observed in [10] for the heat transfer, the occurrence of the maximum mass
transfer coincides with the highest deformation of the droplet.

For the further investigation of the flow, concentration and temperature fields around and inside the drop-
let, plots will be shown for the time marked with the filled circle in Fig. 15 (t ¼ 12 ms).

Fig. 17 depicts the flow field around the droplet, where the complex three-dimensional flow behind the
droplet is remarkable and its unsteady, chaotic character becomes evident. Looking at the velocity magnitude
indicated by the color of the stream line ribbons, a recirculation zone behind the droplet with very low veloc-
ities can be observed. The fluid exchange between this zone and the surrounding gas is rather low, leading to
higher concentrations of vapour and lower temperatures (see below).
Fig. 17. Flow field around the droplet at t ¼ 12 ms.



Fig. 18. Vapour distribution shown by VOF variable f2 at t ¼ 12 ms.

Fig. 19. Temperature distribution inside and around the droplet at t ¼ 12 ms.
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Fig. 20. Velocity field inside the droplet.
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In order to assess the distribution of vapour inside the domain, the VOF variable f2 and the tangential vec-
tors of velocity are depicted in Fig. 18 on a slice through the centre of the droplet. The highest concentration of
vapour can be observed directly at the surface of the droplet, as expected. Furthermore, there is a zone with
quite high values of f2 in the wake of the droplet due to recirculation as already stated above. Generally one
has to bear in mind that only a snapshot is shown and the presented distribution changes rapidly. However,
the figures give a good impression of the phenomena taking place.

The temperature distribution inside and around the droplet is shown in Fig. 19 on the same slice through
the droplet centre already used above. The temperature field inside the droplet is homogeneous with slight gra-
dients near the droplet surface. This seems plausible and is a result of the mixing due to the flow field inside the
droplet. Considering the temperature field around the droplet, one clearly sees that the convective domination
of the problem leads to a very similar distribution compared to that of the vapour concentration.

Finally the velocity field inside the droplet is presented in Fig. 20. There are two vortex pairs that are gen-
erated by the outer flow adjacent to the droplet surface. These vortex structures lead to a very strong mixing of
the fluid as already stated above with regard to the temperature distribution inside the droplet.

5. Conclusion

Evaporation of droplets in an air flow has been studied numerically by using the in house code FS3D. The
match of the calculated Sherwood numbers with data from the literature proves the ability of the presented
vapour source formulation to account for flows with low and high mass transfer rates. This formulation is
accompanied by the method of calculating the velocities of the gaseous and the liquid phase at the interface,
allowing to consider the Stefan flow in a correct way. The computation of the source for the continuity equa-
tion results in a smooth temporal developing of the pressure in contrast to pressure oscillations that occur
when using a formulation of this source found in literature in the framework of the presented method.

The method was used to study the behaviour of a strongly deformed water droplet at high Reynolds and
Weber numbers. Certain interesting physical processes were identified, including the complex three-dimen-
sional flow in the wake of the droplet, its transient behaviour and the relation between deformation and
Sherwood number.
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Improvements still to implement involve the use of temperature dependent material properties for flows
with a big temperature range as well as local grid refinement at the interface in order to significantly reduce
the numerical costs for problems with thin boundary layers.
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Appendix A. Wagner equation

The vapour pressure pv;sat at the interface is calculated using the Wagner equation as proposed by [26]. The
equation for the reduced vapour pressure pv;sat;r ¼ pv;sat=pc (pc: critical pressure) reads
pv;sat;r ¼
asþ bs1:5 þ cs3 þ ds6

T r

; ðA:1Þ
where T r ¼ T =T c is the reduced temperature (T c: critical temperature), s ¼ 1� T r and a; b; c; d are material
constants. All properties for different fluids are provided by [26].
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